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Abstract about the underlying rendering technique to achieve the
desired results.

Direct volume rendering techniques map volumetric dspecially the specification of higher-dimensional trans-
tributes (e.g. density, gradient magnitude, etc.) to Visudear functions is challenging. Common user interfaces
styles. Commonly this mapping is specified by a trangrovide methods to brush in two dimensions. While
fer function. The specification of transfer functions is lrushing in 2D is an intuitive method to select re-
complex task and requires expert knowledge about tiens of interest or specify features, user interfaces for
underlying rendering technique. In the case of multipfégher-dimensions are more challenging and often non-
volumetric attributes and multiple visual styles the speittuitive.
ification of the multi-dimensional transfer function bewe propose an alternative method to achieve mean-
comes more challenging and non-intuitive. We presgRgful mappings from volumetric attributes to visual
a novel methodology for the specification of a mappingppearance. Our method enables a multi-dimensional
from several volumetric attributes to multiple illustramapping from several volumetric attributes to multiple
tive visual styles. We introduce semantic layers that ajisual styles. We replace the complex task of multi-
low a domain expert to specify the mapping in the nagimensional color transfer function design by introduc-
ural language of the domain. A semantic layer definggy semantic layers. A semantic layer linguistically de-
the mapping of volumetric attributes to one visual stylgcribes a mapping from a combination of volume at-
Volumetric attributes and visual styles are representgfibutes to one visual style. An opacity transfer function
as fuzzy sets. The mapping is specified by rules that a&et by the user to specifyhatis shown. The seman-
evaluated with fuzzy logic arithmetics. The user spegjc layers describéow it is shown. A semantic layer
fies the fuzzy sets and the rules without special knovdstablishes a mapping from semantic values of volume
edge about the underlying rendering technique. Semafributes to semantic values of visual styles. The vol-
tic layers allow for a linguistic specification of the mapume attributedensityis for example described by se-
ping from attributes to visual styles replacing the tradinantic values ranging fromerq oververy low low and
tional transfer function specification. middleto high. The styleshadingcan for example range

from soft, overhardto cartoonish A semantic layer can

for example map the semantic valoigh densityto the
1 Introduction semantic valueartoonish shading

The semantic values are defined using fuzzy sets. The
Many popular direct volume rendering techniques ufézzy sets are described by membership functions that
a transfer function that maps the measured density \&l€ specified by the user. The mapping of various vol-
ues to colors and opacities. These visual properties Hfge attributes to a given visual style is achieved with
usually composited into the final image. More advancdégzzy logic arithmetics. Fuzzy logic rules specify the
techniques use other volumetric attributes, like gradigR@PPINg with the natural language of the application do-
magnitude, curvature, or statistical properties and majin-
these values via a multi-dimensional transfer functidrhe objective of the semantic layers concept is a mean-
to visual attributes. All these techniques have in cormgful mapping from given volume attributes to given
mon, that they map attributes of the underlying data @isual styles for the purpose of illustration. We iden-
visual appearance via a transfer function. Transfer furified two major challenges to make our novel concept
tions are a powerful tool to achieve various visualizapplicable. On the one hand the mapping has to be bijec-
tions. However, the specification of transfer functions five in order to be an adequate replacement of the well
a complex task. The user has to have expert knowledggablished color transfer functions. On the other hand



2 2 RELATED WORK

it is desirable to achieve a semantic mapping by the uBee remainder of this paper is structured as follows: In
of semantically meaningful values. Section 2 we review related work. In Section 3 the novel

Bijective Mapping: A bijective mapping ensures thaconcept of semantic layers for illustrative volume ren-

the generated image can be interpreted by the viewdg!ing is described in detail. We give an overview of

For the purpose of visualization it is necessary that tH concept and illustrate it with a simple example. In

meaning of the image can be resolved. The viewer of tRgction 4 we give details about the implementation of
image has to be provided with details about the mappifigf Prototype system. In Section 5 we show exemplary
procedure in order to resolve the meaning of the imad@sults of our system for different potential application

A common example for a bijective mapping is a visuafi'eas.

ization with color encoding. The legend accompanying

the visualization ensures that the image can be resolved

and has a meaningful interpretation in the underlyirz Related Work

arameter domain.
P We divide the related work into three different cate-

Vollume rendertmg with tsem;—transpzrerg"re%][!ons n t%%ries. We review the related work in illustrative vi-
volume cannot guarantee 10 provide DIECUVE VISUGY, 47 ation in Section 2.1. In Section 2.2 we compare

|zat|_ons. The comp_05|_t|_ng of the semi-transparent C_?ijr work to other multi-dimensional visualization tech-
ors introduces ambiguities. However, volume renderi ues that map multiple volume attributes to multiple

does potentially convey more information about the da(}%ual styles. In Section 2.3 we describe related work

than pure |so—.surface renderings. Beqause of the S€Nhe area of medical visualization that deals with the
transparency inner structures are unveiled and can be

$Bhantic classification of volume data.
plored. The ambiguities introduced by the compositing antic classitication of volume data

function can be resolved if the used colors are chosen ) ) o
carefully. Animation or interactive exploration provide2.1  lllustrative Visualization

further help to resolve the ambiguities. . . —
) ] S ~Many previous approaches for the selective application
Semantic Mapping: The specification of the semantiGyt \jsyal styles have been presented. Seligmann and

mapping from volume attributes to visual styles in Oyfeiner [13] present a system for intent-based illustra-
approach is done with semantic values. Measured gpghs They use design rules to achieve the intended vi-
simulated data have usually several meaningful interva|$,ization of geometric objects. Svakhine et al. [16]
that are relevant to the user. For example a PET scarppisent the idea of illustration motifs. They generate il-
a brain measures brain activity. It shows homogeneqysrative visualizations guided by a specific motif like

regions of activity in the brain that are labeled by experige hurpose or the targeted audience of the illustration.
with semantic values such &sw activity or high activ- e |evel of expertise of the viewer serves as input to ad-
ity. Diffusion MRI data provides information about thgyst the automatically generated illustration. Yuan and

healthiness of tissue regions and is classified by exp&&igen [20] present a method to enhance volume render-
with semantic values likbealthy diseasedor necrotic ing with different styles of non-photorealistic surface

Medical CT data encode the measured density value$digering techniques. Hauser et al. [4] introduce two-
Hounsfield units. Specific intervals of the Hounsfielfl,e| yolume rendering that allows the selective combi-
scale refer to different tissue types like air, soft tisSUgation of multiple rendering methods for different re-
bone, contrast enhanced vessels, etc. gions. The selective application of specific styles based
There are many more examples of domains where &@-volume attributes was also used in other previous
mantic parameters exist. Common visualization teclyork [1, 9]. Our approach also provides the possibil-
niques (especially direct volume rendering with transfiy to selectively show features of interest with different
functions) do typically not make use of these paramgisual styles. However the focus of our work lies on
ters. the semantic mapping of volumetric attributes to visual
Common direct volume rendering techniques also @tyles and a uniform approach for the specification of
not make use of semantics for the description of visudifferent styles.

styles. Although several semantic parameters exist é&ldan et al. [14] present a technique to render pre-
are used naturally by illustrators. For example the ddefined artistic styles. Their method allows the speci-
scriptions ofshading tone rendering stylesaturation fication and use of very different artistic styles in a uni-
texture etc. are done with semantic values. We préerm framework. We adapted their technique to serve as
pose to use these parameters in the specification of ghieasis for the parameterized representation of different
visualization mapping as well. styles.



2.3 Medical Visualization 3

Semantic Layers Approach
Rule Base
F_\ ( Layered Styles
> if antecedenta; then consequent ¢ < rafrgge > o
of Sj S
I : —> : g
(Volume Attributes ) ( \ ' i =3
<—range —» g
if antecedenta, then consequent ¢, ol GGG
<«-range _5
of Ay
— —

<« 9 —> | - :
of Aj Traditional Color Transfer Function Based Approach

 Color Transfer Function Shading

> | —> [ T

Figure 1: Comparison of the traditional color transfer fiime based shading and the novel semantic layer ap-
proach: In the traditional pipeline multiple volume attribs are used to look up color in the color transfer func-
tion. The color is commonly shaded afterwards. In the seiméayters pipeline the volume attributes are described
by semantic values. Rules are specified using the semaiftiesvaf the volume attributes in the antecedent part
of the rule. The rules map the antecedents to semantic Vviuesual styles specified in the consequent part. All
rules affecting one visual style are evaluated to deterrfinenumeric values for the style. The visual styles are
layered on top of each other and composited from the backgdrtauthe top most style.

2.2 Multi-Dimensional Volume Visualiza- the specification of rules mapping semantic values of
tion volume attributes to semantic values of visual styles.

Kniss et al. [7] present an approach for multi-

dimensional transfer functions. They also employ th&3 Medical Visualization

technique to quantify statistical measures of multiple

fuzzy segmentation volumes [8]. Hladuvka et al. [3{Ve see illustrative visualization for operation planning,
as well as Kindlmann et al. [6] used multi-dimensiondlfustration for patient briefing, and multi-modal visual-
transfer functions based on the density and a curvatiFation as potential applications of our approach. Others
measure. In the work of McCormick et al. [10] as weffave presented approaches related to our work.

as Stockinger et al. [15] systems are presented thatRlppenbeck et al. [17] as well as Zhou et al. [21] mod-
low a formulation of the visualization mapping as mathfy the appearance of volumetric structures based on the
ematical expressions. Our approach hides the complgistance to a predefined region. Our system provides a
ity of mathematical formulations by the use of fuzzgimilar functionality. The user can define a style that
logic. In the work of Doleisch et al. [3] a system fofs used in dependence of the distance to a given region.
the interactive exploration of complex data is presenterhe chosen style can be altered and modified interac-
Woodring and Shen [18] use set and numerical operat@gly. Rezk-Salama et al. [11] present a high-level user
to visualize and compare multi-variate and time-varyingterface for the specification of transfer functions with
data. Sato et al. [12] use rules to identify tissue strusemantics. We follow up on the idea of specifying a
tures in multi-modal data. mapping from volume attributes to a visual style by se-
Our approach is similar to these approaches as it usemantically meaningful parameters. We do however not
rule based specification of features in the data. Howewanploy a traditional color transfer function to achieve
the specification of the mapping to visual attributes this mapping. The derivation of semantics for parame-
our system is done using fuzzy logic. Fuzzy logic allowters in our system can be done once by experts whereas
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in th_e work _of Re_zk-_SaIama et al. [11] it |s_done aum@olume Attributes\ Layered Styles \
matically using principal component analysis on a set

predefined transfer functions. density color

3 Overview of the Semantic Layers curvature e

concet CE | 560

A comparison between the traditional color transfer

function based approach and the semantic layers ap-

proach is shown in Figure 1. The traditional approadtigure 2: Exemplary specification of semantic values.
takes multiple volume attributes as input and derivesSimple semantic values for the volume attributies-
basic color via the color transfer function for each sarsity, andcurvatureare shown as well as for the visual
ple position. The color is usually shaded and used fstylescolor andcontour.

compositing to get the final color of the pixel. The se-

mantic layers approach also takes multiple volume at- _ ) ] ) )
tributes as input but in contrast evaluates a set of ruledid 19ure 2 are just straight lines. In practice member-

determine the different visual styles applied to the cufhiP functions can be more complex and attributes are
rent sample. The styles are composited from the badgscribed v_wth more semantic values. For example the
ground style to the top most layer to determine the col$p!Ume attributalensitycould have the valuegery low

of the current sample. The color of the sample is uskl: Middie andhigh referring to meaningful types of
for compositing to determine the color of the pixel. tissue likeair, soft tissueboneg contrast enhanced ves-

sels etc.
h’rp_e linguistic values for visual styles are also defined
y ing membership functions. In Figure 2 simple exam-
es for the visual stylesolor andcontourare shown.
qr the visual stylecolor the definition of the seman-
fic valuesgreenandred are shown. The visual style
qntour is described by the semantic valudgsn and

To achieve the linguistic mapping from values of vo
ume attributes to values of visual styles we use sem
tic values. The semantic values are described in S
tion 3.1. The mapping from semantic values of volu

attributes to semantic values of visual styles is specifi
with rules. The rule base described in Section 3.2 co

putes the mapping onto visual styles. The evaluation K Shadina . | ; isual stvl
the rules results in numeric values for each visual sty IC adingis anotner examples of a visual styles

Each style is parameterized and contributes according; t ccr)]uld k_)ehdezcrlbfd W'tE t_rllﬁ se;nia\rl;tc V?lue? N
the numeric value to the final visual appearance of o gtldp ongls.f an tﬁar O?n'st th e style te_sa ul[rzulltlm
sample. The styles are described in Section 3.3. THId range from the valugolo the semantic va .

final visual appearance of a sample is determined by the
composition of the layered visual styles. The concept8f2 Rule Base

layered styles is described in Section 3.4.
The central component of our system is the rule base

) that gives a linguistic description of the desired map-

3.1 Semantic Values ping. A rule states the premise in the antecedent part

) ) o o and the conclusion in the consequent part. The premise
A semantic value is a linguistic description of a valug 5 |ogical combination of semantic values of volume
of a volume attribute or a visual style. It is defined as&yriputes. The conclusion is a list of styles that are af-
fuzzy set given by its membership function. fected by the rule. A rule could for example stiftden-
Figure 2 shows an example of the specification of sty is middle and brain activity is very high then color-
mantic values for the volume attributdensityandcur- coding is red The result of the evaluation of one rule
vature The attributedensityis described with the se-is another fuzzy set quantifying the membership to the
mantic valuedow andhigh. The attributecurvatureis antecedent. Antecedents of all rules that have implica-
described with the semantic valase-to-zeroThe se- tions on the appearance of one style are aggregated and
mantic values are specified with a membership functiatefuzzyfied. The result of the defuzzyfication is a style
In Figure 2 only simple examples are shown to illuscolume describing the value of the visual style at each
trate the concept of membership functions and semaoxel position. The implication, aggregation and de-
tic value definition. The membership functions showfuzzification can for the moment be seen as black boxes
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‘Shadng

cartoonish )

that map the antecedents of the rules to values for the A
sual styles. In Section 4 we give details about the us
fuzzy logic methods.

strong

weak
. 0 )

value for style
high

Rule 1 Rule 2
if density is high then if principal curvature is not close
style Sy is high to zero then style S; is high

none

Figure 3: Style volumes: Two iso-surfaces of the cube
dataset for each style volume are rendered. A color-
coding was used to encode the numeric values for each

style. The left style volume shows the result of a den- . o : i
sity based rule. The right image shows the result Of|n—|gure 4: Combination of three parameterized orthogo

A styles: The styleolor is constantly set to blue. The
curvature based rule. Green color means low values

r .
the given style, yellow color means high values for ths%/ ;iﬁ?:g t(;);:qsa?: dglossynesgradually vary over their
given style. '

none soft

In Figure 3 two style volumes are shown. A color cod- . . .
g Y %epractlce all three axis (the color, the shading, and the

ing was applied on two nested iso-surfaces of the cu ; . v allowi dual ch
dataset to encode the value for the style. Green me&RE ours) vary continuously allowing a gradual change

low value for the style and yellow means high value fdy ealch dimdciTsion. In Figure 4 the styelor is con-
the style. The left style volume is the result of the rutantly settdiue
if density is high then stylegSs high The right style

volume is the result of the rulécurvature is not close- orthogonality: We propose to use orthogonal styles to

to-zero then style:Ss high achieve meaningful mappings. Potentially the combi-
nation of different styles leads to ambiguities. It is de-
3.3 Styles sirable to achieve mappings of multiple styles that can

be combined without leading to ambiguities. We de-

Each style volume specifies the value for a style at edtff Orthogonal styles as a set of styles that do not infer
position. To apply a style to a sample the style needs"i’bth each other. The concept of orthogonal styles can

be parameterized. The parameterization of a style & S€€N in Figure 4. The example illustrates the combi-
sures a continuous application of one style. nation of the three orthogonal styleslor, contoursand

o glossynessNine exemplary combinations of the grad-
Parameterization: A common example of a parameter[]a”y varying stylezontoursandglossynesare shown.

ized style is a color scale. In traditional illustration RoWr & -5 or-dimension is not shown in Figure 4, however
ever a greater variety of gradually varying styles exis{g g orthogonal to the shown dimensioosntoursand
It is desirable that the application of one style VOIU”Eossyness

results in a gradual application of the style. Parameteér-

ized styles are needed to achieve this gradual transition.

An example of parameterized styles can be seen in Figie orthogonality of visual styles does in general not

ure 4. The spheres in Figure 4 are drawn manually. Tealve the problem of ambiguities in volume renderings

glossyness varies over the vertical axis froome-over using semi-transparency. The use of orthogonal styles
weak-to strong-glossyness. The style contours varids (not sufficient, but) necessary to achieve meaningful
along the horizontal axis fromoneover thin to thick. and bijective volume visualizations.
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3.4 Layered Styles one style according to a set of rules. The rules allow for

. ) . o ) a differentiation of regions and for a selective applica-
From an |II.ustrat|on point of view it is desirable to apply;,, of the styles. Each layer in the hierarchy is applied
the styles incrementally and selectively. in regions according to its style volume resulting in a se-
Incremental Application of Styles: Our approach for |a¢tive application of the style. Note that a completely
the incremental application of multiple styles resemblg@aque style overdraws all styles lower in the hierar-

the work-flow of a traditional illustrator. Traditional "'chy. To achieve meaningful illustrations it is important
lustrations are drawn in layers. Each layer is applied @ choose the styles carefully.

top of another. First a basic style is applied to a spe-

cific region. On top of the basic style shading is applie -
contours are added and specular highlights are draw@ Q Q

Interpretation: |if glossyness s high then | | if contours are red then
density is high principal curvature is
not close to zero

Figure 5: Incremental application of styles: Two nested
iso-surfaces of the cube dataset are shown. From left

to right the following layers are incrementally appliedt/9ure 6: Selective application of styles: The leftimage
background style, subtle cartoonish shading, contouf80Ws two |so-surface_of th(=T cube dataset. All styles are
and glossy highlights. fully appll_ed. In the m|d_dIe image the stygiossy_nes_s

is determined by a density based rule. Glossy highlights
Figure 5 shows the incremental application of layeréd€ only drawn in regions of high density. In the right
styles. Two nested iso-surfaces of the cube dataset igt@ge the stylecontoursis determined by a curvature
rendered using the same styles as shown in Figurebﬁ.sed rule. The contours are drawn in red in regions of
During rendering we automatically apply the style dtigh absolute principle curvature. The rules specifying
the manually drawn spheres to achieve the same appéf-mapping can be read backward as an interpretation
ance of the rendered object. Details about the appli@the images.
tion of pre-defined styles during rendering are given in
Section 4. The different layers respectively the diffeFigure 6 shows the selective application of visual styles.
ent styles are composited on top of each other, startilge leftmost image shows two iso-surfaces of the cube
with a background style applied to all regions. The lefgataset. All styles are fully applied. In the middle image
most image in Figure 5 was rendered using the unsha@édrigure 6 the rulef density is high then glossyness is
background style. In this case the background stylehiighis applied. The stylglossynesss affected by this
specified by the sphere in the lower left corner of Figule and applied only to regions of high density. The
ure 4. The second image in Figure 5 is drawn applyingight image of Figure 6 demonstrates the selective appli-
subtle cartoon shading style. The cartoon shading stgifion of a style following a curvature based rule. The
is not shown in Figure 4. The third image in Figure 5 igontours are drawn in red in regions with the first princi-
rendered adding a contour. The contour style is given pgl curvature not close to zero. The rules that lead to the
the sphere in the lower right corner in Figure 4. Finall§elective application of the visual styles can be read in
the layer that resembles a glossy highlight is appliedie opposite direction to resolve the image and to map
The result is shown in the rightmost image of Figure Hack the styles to the original semantic parameters. The
The upper left image in Figure 4 was used to descrilisage in the middle of Figure 6 can be interpreted with
the glossy style. Each style can be applied graduallpe sentencé glossyness is high then density is high
however in Figure 5 all styles are fully applied to shownd the image on the right can be interpreted with the
the effect of incremental application of several layeresgntencéf contours are red then curvature is not close-
styles. to-zero The augmentation of the final result with the
Selective Application of Styles:lllustrators are taught inverted rules ensures the bijectivity of the achieved vi-
to avoid mixtures of too many styles. A selective applgualization.
cation of styles to specific regions can aid to differentin this Section we introduced the concept of seman-
ate the individual regions. Each semantic layer defintés layers for illustrative volume rendering. Semantic
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if density is middle then color-coding is green
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if densityis high and curvature is not close to zero then color-coding is red

Figure 7. Oerview of the fuzzy logic system: The evaluatidriveo simple rules influencing the same style
is illustrated. The density and curvature based rules amtuated. The implication truncates the membership
function of the semantic values specified in the consequemttgb the rules. The membership functions after the
implication are aggregated and defuzzyfied. The result iaenic value for the styleolor-coding

layers provide a methodology for a linguistically specand give details about the implemented direct volume
fied mapping from volumetric attributes to visual stylesendering algorithm.

Note that each of the described components can be ex-

changed independently. For example the rule base for

a medical application can be reused for illustration pus- 1 Fuzzy Logic Inference

poses. Also a set of predefined styles can be reused. For

example a set of styles for illustrative visualization ca\

n_. . L
- . . ) n Figure 7 an overview of the fuzzy logic inference pro-
be reused in different illustration scenarios. 9 y'log P

cess for one visual style is shown. The inference process
evaluates the value for a given style at each voxel posi-
tion. In Figure 7 two rules affect the visual stydelor

4 Implementation coding The fuzzy logic inference is illustrated for a
voxel with density value ® and a curvature value of

In this Secti d ibe the imol . ; 0.2. We use the example of Figure 7 for the description
n this Section we describe the implementation o tqu all fuzzy logic inference steps: membership function

concepts mtroducgq In Section 3. We chose fuzzy IO%Galuation, fuzzy set operations, implication, aggrega-
to achieve the definition of semantic values for volun}f\on and defuzzyfication

attributes as well as for styles. Each semantic value is

specified by a membership function of a fuzzy set. Tidembership Functions and Fuzzy Set Operations:
actual mapping of the values of volume attributes to valhe base for the semantic description of parameters are
ues of visual styles is specified using fuzzy rules. Tliezzy sets. Fuzzy sets are specified via membership
evaluation of the rule base is done using fuzzy logic ofunctions. In Figure 7 the definition of the piecewise
erations. The whole fuzzy logic inference process uskaear membership functionew density middle den-

in our system is described in Section 4.1. An more gesity, high density close to zero curvaturegyreen color-
eral introduction to fuzzy logic can be found in [19]coding andred color-codingcan be seen. The member-
The result of the fuzzy logic inference are style volumeship for a given value of a volume attribute to a fuzzy
that describe the value of each voxel for a given stylget is described by the membership function. In Fig-
Each style provides a parameterization. The paranuge 7 the evaluation of the membership functioiddle
terized definition of styles is achieved in our system laensityresults in 08 for a density value @, whereas the
style descriptors. For the final rendering the styles areembership functiomigh densityresults in 025. The
applied incrementally. In our implementation the increnembership functiorclose-to-zero curvatureesults in
mental application of the layered styles is done durifi2 for the curvature value.R in the example of Fig-
rendering. We introduce style descriptors in Section 4u2e 7.
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Logical operations can be applied on fuzzy sets. Thg/le are used for implication, aggregation and defuzzy-
unary negation operator (i.eot) results in the calcu- fication. The implication, aggregation and defuzzyfica-
lation of one minus the membership function. In thiéon are done in one calculation per voxel position. For
example of Figure 7 the negation is applied to the fuzegfuzzyfication we want to find the centroid of a func-

setcurvature is close to zerd he curvature value of.2 tion f(x) resulting from the aggregation. The centroid

therefore results in a membership value @ for the c¢ of a functionf(x) is given by the equation:

fuzzy setcurvature is not close to zero

The combination of multiple fuzzy sets is done using ci = M (1)

one of the binary operatoesd andor. Theand opera- Jf()dx
tor results in a minimum operation for the membershipe
functions of the operands. Thar operator results in
a maximum operation for the membership functions
the operands. In the example of Figure 7 #ral op-

erator is applied to the fuzzy setfensity is highand

curvature is not close-to-zerd'he result of this opera-
tion is 0.25 as this is the minimum of the chosen values
in the example.

t the membership function for a semantic vagube
(r)q(x). The membership function for the semantic value
§ after the implication of a given rulg is then given by
the equation

m’(x,aj) = min(a;, m(x)) 2

wherea,; is the antecedent value of the rule The ag-
Implication, Aggregation and Defuzzyfication: The gregated membership functidiix) is then given by

fuzzy implication results in a fuzzy set for a visual style.

The resulting membership function is the minimum of f(x) = Zm’(x, aj) 3)

the membership function describing the semantic value

of the style and the value of the antecedent. In Figurelhe centroid of the aggregated function can then be cal-
the result of the implication of the upper rule is the trurgulated by substituting Equation 3 in Equation 1:

cated membership function for the semantic vajreen )

color-coding The truncated membership function de- o — Jx3m'(x aj)dx 4)
scribes a fuzzy set. The lower rule in Figure 7 results /3 m'(x,a))dx

in the truncation of the membership variable for the se-

mantic valuered color-coding The implicated fuzzy We can rewrite Equation 4 as follows:

setsgreen color-codingandred color-codingare com- ,

bined using the aggregation function. cr = zfxm/ (x,aj)dx )
During aggregation multiple fuzzy sets influencing one 2 ) m(x.a;)dx

visual style are combined. In Figure 7 the aggregatigh Equation 5 it can be seen, that the summands in the
of the two fuzzy sets describing tielor-codingare ag- nominator as well as in the denominator do solely de-

greggted resulting in the sum of the two membersw}énd on thea;. We precompute the summands of the
functions. nominator as well as of the denominator and store them

The input for the defuzzyfication is the fuzzy set df @ lookup table. During evaluation tizg are used as
the aggregation. The output of the defuzzyfication #dex for the lookup tables. The sum and the maximum
a numeric value for a given visual style. Many confire the most common aggregation functions. Using the
mon defuzzyfication methods exist. We chose in otaximum as aggregation function does however not al-
implementation the centroid method. In Figure 7 tHew the precomputation of the summands. The defuzzy-
defuzzyfication results in a numeric value for the styfécation is computationally much more expensive using
color-coding The result of the example in Figure 7 fothe maximum for the aggregation. We therefore recom-
the stylecolor-codingis a yellowish green. We chosemnend to use the sum as aggregation function.

the centroid method _because its OWPUt (unlike for Othﬁﬁr our implementation the antecedents are computed
pqpular defuzzyfication methpds like the smal!est-, & d cached. If semantic values of styles or the conse-
.m'ddl.6" or the_largest .Of maximum) varies continuous uent part of a rule changes the cached antecedents are
if the input varies continuously. reused. The time for the evaluation of a rule depends
In our implementation we first compute the antecedentsry much on the complexity of the rule and the dataset
of all specified rules and store them in antecedent vsize. The time for the evaluation of the rules shown in
umes. Whenever a style volume has to be evaluatedtb# examples and results take a few seconds with our
previously computed antecedent volumes that affect thi@rrent unoptimized implementation.



4.2 Rendering Al Styles

The outcome of the fuzzy logic inference is a style vo
ume for each specified style. During rendering the sty
volumes are used to determine the parameter for -
application of each style. To achieve a parameteriz
tion of different styles with one uniform framework we
adapt the style transfer functions approach, introduc
by Bruckner and Giller [2]. Style transfer functions
were introduced to apply artistic styles to volume rel
dering. A style transfer function, like a common one d
mensional transfer function, defines an opacity for ea
density value. Instead of defining a color for each de
sity value it defines a style. The style is given by &
image of a sphere. Each sphere might be manue
shaded by an artist resembling the desired artistic sty
The image of the sphere implicitly defines a color valt
for each normal direction in eye-space. The pre-shaded
sphere can therefore be used as a look-up table during . .
rendering. The gradient in eye-space is used to indeigure 8: Screenshot of the style descriptor widget.
the look-up table. The color value of a sample duringach row shows a parameterized style. From the top to
volume rendering is simply defined by the color value g€ bottom row the following styles are showartistic
the sphere in the direction of the gradient. We adaptédrface styletissue stylecontour style shading style
this approach to parameterize different styles that cafdglossy highlight style
be applied incrementally and selectively. In Figure 8 a
screenshot of the style descriptor widget can be seep, - . .
. T e shown in Figure 10 using the same styles and opacity
The small gray triangles indicate the positions of ﬂ}e . ;
o . ransfer function was 9fps. For the engine block dataset
user specified pre-shaded spheres. Each row is a ﬁ)?'size 256x 256 256) shown in Figure 9 we achieved
rameterization of a style. The spheres displayed by the x '9
) . , an average of 7fps. However using a less transparent
widget in one row are examples for different parame-_ " . .
. . e %oacny transfer function for the same settings resulted
ters interpolating the user specified spheres. The top
row shows an artistic surface style ranging from m iy an average frgme rate of 20fps. For t.he T“O”key at-
q8s dataset (of size 256256x 62) shown in Figure 11

gray over shiny black to glossy metallic. The secon . i
row shows a tissue type style often found in medical fverage frame rates from_9 to 16ps were achieved de
nding on the used opacity transfer function.

lustration. The tissue style in Figure 8 shows examplgg
for soft tissue, skin, and bone. The third row describes
different contour styles ranging from transparent, ov
black to red contour. The last two rows in Figure g Results

show examples for shading styles and glossy highlight

styles. Style descriptors provide a uniform framewo&/e show result images demonstrating the flexibility of
for the parametrization of styles. The user defines a féwr approach. The results show the capability of the
spheres that are used to parameterize the styles. Layé&ysiem to deal with very different volume attributes as
style descriptors can be combined during rendering. input. Our approach uses the method of abstraction of

Our rendering approach is a GPU based ray—casting@l‘—e data. The: jntroduction of s_emantic layers allows for
gorithm. We use one color channel per style. During tﬁegrea'g erX|'b|I|t.y for the used input data and for the de-
evaluation of each style we do one texture lookup peifed visualization method.

sample. The styles are composited from the background-igure 9 three renderings of the engine block dataset
style to the top most layer. Our approach runs witlre shown. The chosen opacity transfer function and
interactive frame rates on a GeForce 8800GTX graphe chosen viewpoint allow the view on many details
ics card. We measured the average frame rates for tfighe engine block dataset. On the left image in Fig-
datasets shown in the result images with a sample dise 9 cartoonish shading is used to make surfaces of the
tance of 05 and a viewport size of 800600. The aver- engine block with different normals clearly distinguish-
age frame rate for the dataset (of size 25866x 166) able. In the middle image of Figure 9 the cartoonish
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if principal curvature is not positive then contours are blueish

Figure 9: Incremental and selective application of stylesdhe engine block dataset. The left image shows a
cartoonish shading effect. The middle image shows a redeax¢donish shading effect and enhances the edges of
the engine block dataset with contours. The right imagecteddy colors the contours. Convex regions are shown
in black, whereas concave regions are shown with blueistoaos

shading style is reduced and contours are added. the Conclusion and Future Work
contours accentuate the individual parts of the engine
block. In the right image the ruiécurvature is not pos- |n this paper we presented a novel approach for the spec-
itive then contours are blueisis used. The curvatureification of the mapping from volume attributes to visual
based selective application of the blue contours makgtgles. We enable a linguistic description for the spec-
it possible to distinguish between convex and concaiation of the desired visualization by using semantic
contours in the image. values for volume attributes and for visual styles. The
novel methodology describdww different features in
the data are rendered. We believe that this paper opens

In Figure 10 an illustrative rendering of a CTA scan dfP @ new research direction dealing with the semantic
a human head is shown. The left image of Figure S@ecification of visualizations.
uses two different tissue styles for bone and skin. In thi@e next step will be an adaption of our system to in-
right image of Figure 10 black contours are selectivetyrporate view dependent attributes liistance to the
applied on the bone using the simple riflelensity is mouse cursqrdepth(i.e. distance to the image plane),
high then contours are thickThe major vessels of thisviewing direction etc. This will allow the selective ap-
dataset are segmented. We used a distance transforplightion of styles driven by view dependent attributes.
the segmented data to apply a distance based rule. Apeadaption of the algorithm is necessary to make view
rulesif distance to vessels is very low then color is redependent rule evaluation possible on the graphics card.
andif distance to vessels is low then color is yellmare However the used separable aggregation method de-
used. We applied the styleolor on top of the other scribed in Section 4 makes it possible to evaluate the
styles. Regions of low distance to the vessels can fges partially on the CPU and partially on the GPU. We
seen in yellow and red in Figure 10. expect the view dependent attributes to be a powerful
tool for interactive illustration.

Further we want to investigate the automatic (or semi-
In Figure 11 three images of the monkey atlas dataset atdomatic) derivation of membership functions. We ex-
shown. The monkey atlas dataset contains a registepedienced, that the membership function specification
CT and PET scan of a monkey head. The CT data was different applications usually follows a similar strat
used for the rendering. The PET data was used for #gy. The membership functions are usually specified
application of the ruléf brain activity is high contours over the range of values that occur within the data. We
are red In all images the red contours are shown. Iplan to use simple heuristics that automatically provide
the top row of Figure 11 two images are shown usirap initial specification of membership functions. The
a semi-transparent opacity transfer function. The lowautomatic generation of membership functions will then
image in Figure 11 uses a more opaque transfer functimmtriggered by the keywonelativelyin a rule. For ex-
and a more illustrative style. ample a rule statini curvature is relatively low . . will
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l if density is high then contours are thick and tissue style is bone I

| if distance to vessels is low then color style is yellow |

| if distance to vessels is very low then color style is red |

Figure 10: lllustrative rendering of a human head. Left
image shows the use of two different tissue styles. The
right image shows the selective application of contours
to regions of high density. Further a distance based color
style was overlayed. Yellow encodes low distance to
vessels and red encodes very low distance to vessels.

be translated into a membership function having a pe
at the minimum value of the curvature and will range

if brain activity is high then contours are red

igure 11: lllustration of the multi-modal monkey atlas

8ataset. The top images show two different views of
the dataset using a transparent opacity transfer function.
Image manipulation programs like Adobe Photoshop bhe lower image shows an illustrative rendering from
Gimp use the concept of layered images. We analbe same view as the top right image. Red contours are

include a pre-specified percentile of the data.

gously use the concept of volumetric layers. Currentiffawn in all three images in region of high brain activity.

the composition of layers is done using the default com-
position method. However, following the analogy of im
age manipulation programs we could allow an intera
tive specification of other composition operations like

difference, inversion, multiplication, etc. [1]
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