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Abstract

Direct volume rendering techniques map volumetric at-
tributes (e.g. density, gradient magnitude, etc.) to visual
styles. Commonly this mapping is specified by a trans-
fer function. The specification of transfer functions is a
complex task and requires expert knowledge about the
underlying rendering technique. In the case of multiple
volumetric attributes and multiple visual styles the spec-
ification of the multi-dimensional transfer function be-
comes more challenging and non-intuitive. We present
a novel methodology for the specification of a mapping
from several volumetric attributes to multiple illustra-
tive visual styles. We introduce semantic layers that al-
low a domain expert to specify the mapping in the nat-
ural language of the domain. A semantic layer defines
the mapping of volumetric attributes to one visual style.
Volumetric attributes and visual styles are represented
as fuzzy sets. The mapping is specified by rules that are
evaluated with fuzzy logic arithmetics. The user speci-
fies the fuzzy sets and the rules without special knowl-
edge about the underlying rendering technique. Seman-
tic layers allow for a linguistic specification of the map-
ping from attributes to visual styles replacing the tradi-
tional transfer function specification.

1 Introduction

Many popular direct volume rendering techniques use
a transfer function that maps the measured density val-
ues to colors and opacities. These visual properties are
usually composited into the final image. More advanced
techniques use other volumetric attributes, like gradient
magnitude, curvature, or statistical properties and map
these values via a multi-dimensional transfer function
to visual attributes. All these techniques have in com-
mon, that they map attributes of the underlying data on
visual appearance via a transfer function. Transfer func-
tions are a powerful tool to achieve various visualiza-
tions. However, the specification of transfer functions is
a complex task. The user has to have expert knowledge

about the underlying rendering technique to achieve the
desired results.

Especially the specification of higher-dimensional trans-
fer functions is challenging. Common user interfaces
provide methods to brush in two dimensions. While
brushing in 2D is an intuitive method to select re-
gions of interest or specify features, user interfaces for
higher-dimensions are more challenging and often non-
intuitive.

We propose an alternative method to achieve mean-
ingful mappings from volumetric attributes to visual
appearance. Our method enables a multi-dimensional
mapping from several volumetric attributes to multiple
visual styles. We replace the complex task of multi-
dimensional color transfer function design by introduc-
ing semantic layers. A semantic layer linguistically de-
scribes a mapping from a combination of volume at-
tributes to one visual style. An opacity transfer function
is set by the user to specifywhat is shown. The seman-
tic layers describehow it is shown. A semantic layer
establishes a mapping from semantic values of volume
attributes to semantic values of visual styles. The vol-
ume attributedensityis for example described by se-
mantic values ranging fromzero, oververy low, low and
middleto high. The styleshadingcan for example range
from soft, overhard to cartoonish. A semantic layer can
for example map the semantic valuehigh densityto the
semantic valuecartoonish shading.

The semantic values are defined using fuzzy sets. The
fuzzy sets are described by membership functions that
are specified by the user. The mapping of various vol-
ume attributes to a given visual style is achieved with
fuzzy logic arithmetics. Fuzzy logic rules specify the
mapping with the natural language of the application do-
main.

The objective of the semantic layers concept is a mean-
ingful mapping from given volume attributes to given
visual styles for the purpose of illustration. We iden-
tified two major challenges to make our novel concept
applicable. On the one hand the mapping has to be bijec-
tive in order to be an adequate replacement of the well
established color transfer functions. On the other hand
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2 2 RELATED WORK

it is desirable to achieve a semantic mapping by the use
of semantically meaningful values.

Bijective Mapping: A bijective mapping ensures that
the generated image can be interpreted by the viewer.
For the purpose of visualization it is necessary that the
meaning of the image can be resolved. The viewer of the
image has to be provided with details about the mapping
procedure in order to resolve the meaning of the image.
A common example for a bijective mapping is a visual-
ization with color encoding. The legend accompanying
the visualization ensures that the image can be resolved
and has a meaningful interpretation in the underlying
parameter domain.

Volume rendering with semi-transparent regions in the
volume cannot guarantee to provide bijective visual-
izations. The compositing of the semi-transparent col-
ors introduces ambiguities. However, volume rendering
does potentially convey more information about the data
than pure iso-surface renderings. Because of the semi-
transparency inner structures are unveiled and can be ex-
plored. The ambiguities introduced by the compositing
function can be resolved if the used colors are chosen
carefully. Animation or interactive exploration provides
further help to resolve the ambiguities.

Semantic Mapping: The specification of the semantic
mapping from volume attributes to visual styles in our
approach is done with semantic values. Measured and
simulated data have usually several meaningful intervals
that are relevant to the user. For example a PET scan of
a brain measures brain activity. It shows homogeneous
regions of activity in the brain that are labeled by experts
with semantic values such aslow activityor high activ-
ity. Diffusion MRI data provides information about the
healthiness of tissue regions and is classified by experts
with semantic values likehealthy, diseased, or necrotic.
Medical CT data encode the measured density values in
Hounsfield units. Specific intervals of the Hounsfield
scale refer to different tissue types like air, soft tissue,
bone, contrast enhanced vessels, etc.

There are many more examples of domains where se-
mantic parameters exist. Common visualization tech-
niques (especially direct volume rendering with transfer
functions) do typically not make use of these parame-
ters.

Common direct volume rendering techniques also do
not make use of semantics for the description of visual
styles. Although several semantic parameters exist and
are used naturally by illustrators. For example the de-
scriptions ofshading, tone, rendering style, saturation,
texture, etc. are done with semantic values. We pro-
pose to use these parameters in the specification of the
visualization mapping as well.

The remainder of this paper is structured as follows: In
Section 2 we review related work. In Section 3 the novel
concept of semantic layers for illustrative volume ren-
dering is described in detail. We give an overview of
the concept and illustrate it with a simple example. In
Section 4 we give details about the implementation of
our prototype system. In Section 5 we show exemplary
results of our system for different potential application
areas.

2 Related Work

We divide the related work into three different cate-
gories. We review the related work in illustrative vi-
sualization in Section 2.1. In Section 2.2 we compare
our work to other multi-dimensional visualization tech-
niques that map multiple volume attributes to multiple
visual styles. In Section 2.3 we describe related work
in the area of medical visualization that deals with the
semantic classification of volume data.

2.1 Illustrative Visualization

Many previous approaches for the selective application
of visual styles have been presented. Seligmann and
Feiner [13] present a system for intent-based illustra-
tions. They use design rules to achieve the intended vi-
sualization of geometric objects. Svakhine et al. [16]
present the idea of illustration motifs. They generate il-
lustrative visualizations guided by a specific motif like
the purpose or the targeted audience of the illustration.
The level of expertise of the viewer serves as input to ad-
just the automatically generated illustration. Yuan and
Chen [20] present a method to enhance volume render-
ing with different styles of non-photorealistic surface
rendering techniques. Hauser et al. [4] introduce two-
level volume rendering that allows the selective combi-
nation of multiple rendering methods for different re-
gions. The selective application of specific styles based
on volume attributes was also used in other previous
work [1, 9]. Our approach also provides the possibil-
ity to selectively show features of interest with different
visual styles. However the focus of our work lies on
the semantic mapping of volumetric attributes to visual
styles and a uniform approach for the specification of
different styles.
Sloan et al. [14] present a technique to render pre-
defined artistic styles. Their method allows the speci-
fication and use of very different artistic styles in a uni-
form framework. We adapted their technique to serve as
a basis for the parameterized representation of different
styles.
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Figure 1: Comparison of the traditional color transfer function based shading and the novel semantic layer ap-
proach: In the traditional pipeline multiple volume attributes are used to look up color in the color transfer func-
tion. The color is commonly shaded afterwards. In the semantic layers pipeline the volume attributes are described
by semantic values. Rules are specified using the semantic values of the volume attributes in the antecedent part
of the rule. The rules map the antecedents to semantic valuesfor visual styles specified in the consequent part. All
rules affecting one visual style are evaluated to determinethe numeric values for the style. The visual styles are
layered on top of each other and composited from the background to the top most style.

2.2 Multi-Dimensional Volume Visualiza-
tion

Kniss et al. [7] present an approach for multi-
dimensional transfer functions. They also employ this
technique to quantify statistical measures of multiple
fuzzy segmentation volumes [8]. Hladuvka et al. [5]
as well as Kindlmann et al. [6] used multi-dimensional
transfer functions based on the density and a curvature
measure. In the work of McCormick et al. [10] as well
as Stockinger et al. [15] systems are presented that al-
low a formulation of the visualization mapping as math-
ematical expressions. Our approach hides the complex-
ity of mathematical formulations by the use of fuzzy
logic. In the work of Doleisch et al. [3] a system for
the interactive exploration of complex data is presented.
Woodring and Shen [18] use set and numerical operators
to visualize and compare multi-variate and time-varying
data. Sato et al. [12] use rules to identify tissue struc-
tures in multi-modal data.
Our approach is similar to these approaches as it uses a
rule based specification of features in the data. However
the specification of the mapping to visual attributes in
our system is done using fuzzy logic. Fuzzy logic allows

the specification of rules mapping semantic values of
volume attributes to semantic values of visual styles.

2.3 Medical Visualization

We see illustrative visualization for operation planning,
illustration for patient briefing, and multi-modal visual-
ization as potential applications of our approach. Others
have presented approaches related to our work.

Tappenbeck et al. [17] as well as Zhou et al. [21] mod-
ify the appearance of volumetric structures based on the
distance to a predefined region. Our system provides a
similar functionality. The user can define a style that
is used in dependence of the distance to a given region.
The chosen style can be altered and modified interac-
tively. Rezk-Salama et al. [11] present a high-level user
interface for the specification of transfer functions with
semantics. We follow up on the idea of specifying a
mapping from volume attributes to a visual style by se-
mantically meaningful parameters. We do however not
employ a traditional color transfer function to achieve
this mapping. The derivation of semantics for parame-
ters in our system can be done once by experts whereas
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in the work of Rezk-Salama et al. [11] it is done auto-
matically using principal component analysis on a set of
predefined transfer functions.

3 Overview of the Semantic Layers
Concept

A comparison between the traditional color transfer
function based approach and the semantic layers ap-
proach is shown in Figure 1. The traditional approach
takes multiple volume attributes as input and derives a
basic color via the color transfer function for each sam-
ple position. The color is usually shaded and used for
compositing to get the final color of the pixel. The se-
mantic layers approach also takes multiple volume at-
tributes as input but in contrast evaluates a set of rules to
determine the different visual styles applied to the cur-
rent sample. The styles are composited from the back-
ground style to the top most layer to determine the color
of the current sample. The color of the sample is used
for compositing to determine the color of the pixel.

To achieve the linguistic mapping from values of vol-
ume attributes to values of visual styles we use seman-
tic values. The semantic values are described in Sec-
tion 3.1. The mapping from semantic values of volume
attributes to semantic values of visual styles is specified
with rules. The rule base described in Section 3.2 com-
putes the mapping onto visual styles. The evaluation of
the rules results in numeric values for each visual style.
Each style is parameterized and contributes according to
the numeric value to the final visual appearance of one
sample. The styles are described in Section 3.3. The
final visual appearance of a sample is determined by the
composition of the layered visual styles. The concept of
layered styles is described in Section 3.4.

3.1 Semantic Values

A semantic value is a linguistic description of a value
of a volume attribute or a visual style. It is defined as a
fuzzy set given by its membership function.

Figure 2 shows an example of the specification of se-
mantic values for the volume attributesdensityandcur-
vature. The attributedensityis described with the se-
mantic valueslow andhigh. The attributecurvatureis
described with the semantic valueclose-to-zero. The se-
mantic values are specified with a membership function.
In Figure 2 only simple examples are shown to illus-
trate the concept of membership functions and seman-
tic value definition. The membership functions shown

...

Volume Attributes Layered Styles

...

greenlow high red

colordensity

contourcurvature

close-to-zero thickthin

range

range

Figure 2: Exemplary specification of semantic values.
Simple semantic values for the volume attributesden-
sity, andcurvatureare shown as well as for the visual
stylescolor andcontour.

in Figure 2 are just straight lines. In practice member-
ship functions can be more complex and attributes are
described with more semantic values. For example the
volume attributedensitycould have the valuesvery low,
low, middleandhigh referring to meaningful types of
tissue likeair, soft tissue, bone, contrast enhanced ves-
sels, etc.

The linguistic values for visual styles are also defined
using membership functions. In Figure 2 simple exam-
ples for the visual stylescolor andcontourare shown.
For the visual stylecolor the definition of the seman-
tic valuesgreenand red are shown. The visual style
contour is described by the semantic valuesthin and
thick. Shadingis another examples of a visual styles
that could be described with the semanitc valuesnone,
soft, phongishandcartoonish. The styledesaturation
could range from the valueno to the semantic valuefull.

3.2 Rule Base

The central component of our system is the rule base
that gives a linguistic description of the desired map-
ping. A rule states the premise in the antecedent part
and the conclusion in the consequent part. The premise
is a logical combination of semantic values of volume
attributes. The conclusion is a list of styles that are af-
fected by the rule. A rule could for example stateif den-
sity is middle and brain activity is very high then color-
coding is red. The result of the evaluation of one rule
is another fuzzy set quantifying the membership to the
antecedent. Antecedents of all rules that have implica-
tions on the appearance of one style are aggregated and
defuzzyfied. The result of the defuzzyfication is a style
volume describing the value of the visual style at each
voxel position. The implication, aggregation and de-
fuzzification can for the moment be seen as black boxes
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that map the antecedents of the rules to values for the vi-
sual styles. In Section 4 we give details about the used
fuzzy logic methods.

if principal curvature is not close 

to zero then style S   is high

if density is high then 

style S   is high 

Rule 1 Rule 2
low high

value for style

10

Figure 3: Style volumes: Two iso-surfaces of the cube
dataset for each style volume are rendered. A color-
coding was used to encode the numeric values for each
style. The left style volume shows the result of a den-
sity based rule. The right image shows the result of a
curvature based rule. Green color means low values for
the given style, yellow color means high values for the
given style.

In Figure 3 two style volumes are shown. A color cod-
ing was applied on two nested iso-surfaces of the cube
dataset to encode the value for the style. Green means
low value for the style and yellow means high value for
the style. The left style volume is the result of the rule
if density is high then style S0 is high. The right style
volume is the result of the ruleif curvature is not close-
to-zero then style S1 is high.

3.3 Styles

Each style volume specifies the value for a style at each
position. To apply a style to a sample the style needs to
be parameterized. The parameterization of a style en-
sures a continuous application of one style.

Parameterization: A common example of a parameter-
ized style is a color scale. In traditional illustration how-
ever a greater variety of gradually varying styles exists.
It is desirable that the application of one style volume
results in a gradual application of the style. Parameter-
ized styles are needed to achieve this gradual transition.
An example of parameterized styles can be seen in Fig-
ure 4. The spheres in Figure 4 are drawn manually. The
glossyness varies over the vertical axis fromnone-over
weak-to strong-glossyness. The style contours varies
along the horizontal axis fromnoneover thin to thick.

shading

none soft cartoonish

g
lo

ss
yn

e
ss

n
o

n
e

w
e

a
k

st
ro

n
g

Figure 4: Combination of three parameterized orthogo-
nal styles: The stylecolor is constantly set to blue. The
stylescontours, andglossynessgradually vary over their
specified domain.

In practice all three axis (the color, the shading, and the
contours) vary continuously allowing a gradual change
in each dimension. In Figure 4 the stylecolor is con-
stantly set toblue.

Orthogonality: We propose to use orthogonal styles to
achieve meaningful mappings. Potentially the combi-
nation of different styles leads to ambiguities. It is de-
sirable to achieve mappings of multiple styles that can
be combined without leading to ambiguities. We de-
fine orthogonal styles as a set of styles that do not infer
with each other. The concept of orthogonal styles can
be seen in Figure 4. The example illustrates the combi-
nation of the three orthogonal stylescolor, contoursand
glossyness. Nine exemplary combinations of the grad-
ually varying stylescontoursandglossynessare shown.
Thecolor-dimension is not shown in Figure 4, however
it is orthogonal to the shown dimensionscontoursand
glossyness.

The orthogonality of visual styles does in general not
solve the problem of ambiguities in volume renderings
using semi-transparency. The use of orthogonal styles
is (not sufficient, but) necessary to achieve meaningful
and bijective volume visualizations.
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3.4 Layered Styles

From an illustration point of view it is desirable to apply
the styles incrementally and selectively.
Incremental Application of Styles: Our approach for
the incremental application of multiple styles resembles
the work-flow of a traditional illustrator. Traditional il-
lustrations are drawn in layers. Each layer is applied on
top of another. First a basic style is applied to a spe-
cific region. On top of the basic style shading is applied,
contours are added and specular highlights are drawn.

Figure 5: Incremental application of styles: Two nested
iso-surfaces of the cube dataset are shown. From left
to right the following layers are incrementally applied:
background style, subtle cartoonish shading, contours,
and glossy highlights.

Figure 5 shows the incremental application of layered
styles. Two nested iso-surfaces of the cube dataset are
rendered using the same styles as shown in Figure 4.
During rendering we automatically apply the style of
the manually drawn spheres to achieve the same appear-
ance of the rendered object. Details about the applica-
tion of pre-defined styles during rendering are given in
Section 4. The different layers respectively the differ-
ent styles are composited on top of each other, starting
with a background style applied to all regions. The left-
most image in Figure 5 was rendered using the unshaded
background style. In this case the background style is
specified by the sphere in the lower left corner of Fig-
ure 4. The second image in Figure 5 is drawn applying a
subtle cartoon shading style. The cartoon shading style
is not shown in Figure 4. The third image in Figure 5 is
rendered adding a contour. The contour style is given by
the sphere in the lower right corner in Figure 4. Finally
the layer that resembles a glossy highlight is applied.
The result is shown in the rightmost image of Figure 5.
The upper left image in Figure 4 was used to describe
the glossy style. Each style can be applied gradually,
however in Figure 5 all styles are fully applied to show
the effect of incremental application of several layered
styles.
Selective Application of Styles:Illustrators are taught
to avoid mixtures of too many styles. A selective appli-
cation of styles to specific regions can aid to differenti-
ate the individual regions. Each semantic layer defines

one style according to a set of rules. The rules allow for
a differentiation of regions and for a selective applica-
tion of the styles. Each layer in the hierarchy is applied
in regions according to its style volume resulting in a se-
lective application of the style. Note that a completely
opaque style overdraws all styles lower in the hierar-
chy. To achieve meaningful illustrations it is important
to choose the styles carefully.

if contours are red then 

principal curvature is 

not close to zero

if  glossyness is high then 

density is high
Interpretation:

Figure 6: Selective application of styles: The left image
shows two iso-surface of the cube dataset. All styles are
fully applied. In the middle image the styleglossyness
is determined by a density based rule. Glossy highlights
are only drawn in regions of high density. In the right
image the stylecontoursis determined by a curvature
based rule. The contours are drawn in red in regions of
high absolute principle curvature. The rules specifying
the mapping can be read backward as an interpretation
of the images.

Figure 6 shows the selective application of visual styles.
The leftmost image shows two iso-surfaces of the cube
dataset. All styles are fully applied. In the middle image
of Figure 6 the ruleif density is high then glossyness is
high is applied. The styleglossynessis affected by this
rule and applied only to regions of high density. The
right image of Figure 6 demonstrates the selective appli-
cation of a style following a curvature based rule. The
contours are drawn in red in regions with the first princi-
pal curvature not close to zero. The rules that lead to the
selective application of the visual styles can be read in
the opposite direction to resolve the image and to map
back the styles to the original semantic parameters. The
image in the middle of Figure 6 can be interpreted with
the sentenceif glossyness is high then density is high
and the image on the right can be interpreted with the
sentenceif contours are red then curvature is not close-
to-zero. The augmentation of the final result with the
inverted rules ensures the bijectivity of the achieved vi-
sualization.

In this Section we introduced the concept of seman-
tic layers for illustrative volume rendering. Semantic
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Figure 7: Oerview of the fuzzy logic system: The evaluation of two simple rules influencing the same style
is illustrated. The density and curvature based rules are evaluated. The implication truncates the membership
function of the semantic values specified in the consequent part of the rules. The membership functions after the
implication are aggregated and defuzzyfied. The result is a numeric value for the stylecolor-coding

layers provide a methodology for a linguistically speci-
fied mapping from volumetric attributes to visual styles.
Note that each of the described components can be ex-
changed independently. For example the rule base for
a medical application can be reused for illustration pur-
poses. Also a set of predefined styles can be reused. For
example a set of styles for illustrative visualization can
be reused in different illustration scenarios.

4 Implementation

In this Section we describe the implementation of the
concepts introduced in Section 3. We chose fuzzy logic
to achieve the definition of semantic values for volume
attributes as well as for styles. Each semantic value is
specified by a membership function of a fuzzy set. The
actual mapping of the values of volume attributes to val-
ues of visual styles is specified using fuzzy rules. The
evaluation of the rule base is done using fuzzy logic op-
erations. The whole fuzzy logic inference process used
in our system is described in Section 4.1. An more gen-
eral introduction to fuzzy logic can be found in [19].
The result of the fuzzy logic inference are style volumes
that describe the value of each voxel for a given style.
Each style provides a parameterization. The parame-
terized definition of styles is achieved in our system by
style descriptors. For the final rendering the styles are
applied incrementally. In our implementation the incre-
mental application of the layered styles is done during
rendering. We introduce style descriptors in Section 4.2

and give details about the implemented direct volume
rendering algorithm.

4.1 Fuzzy Logic Inference

In Figure 7 an overview of the fuzzy logic inference pro-
cess for one visual style is shown. The inference process
evaluates the value for a given style at each voxel posi-
tion. In Figure 7 two rules affect the visual stylecolor
coding. The fuzzy logic inference is illustrated for a
voxel with density value 0.6 and a curvature value of
0.2. We use the example of Figure 7 for the description
of all fuzzy logic inference steps: membership function
evaluation, fuzzy set operations, implication, aggrega-
tion and defuzzyfication.

Membership Functions and Fuzzy Set Operations:
The base for the semantic description of parameters are
fuzzy sets. Fuzzy sets are specified via membership
functions. In Figure 7 the definition of the piecewise
linear membership functionslow density, middle den-
sity, high density, close to zero curvature, green color-
coding, andred color-codingcan be seen. The member-
ship for a given value of a volume attribute to a fuzzy
set is described by the membership function. In Fig-
ure 7 the evaluation of the membership functionmiddle
densityresults in 0.8 for a density value 0.6, whereas the
membership functionhigh densityresults in 0.25. The
membership functionclose-to-zero curvatureresults in
0.2 for the curvature value 0.2 in the example of Fig-
ure 7.
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Logical operations can be applied on fuzzy sets. The
unary negation operator (i.e.not) results in the calcu-
lation of one minus the membership function. In the
example of Figure 7 the negation is applied to the fuzzy
setcurvature is close to zero. The curvature value of 0.2
therefore results in a membership value of 0.8 for the
fuzzy setcurvature is not close to zero.

The combination of multiple fuzzy sets is done using
one of the binary operatorsand, andor. Theandopera-
tor results in a minimum operation for the membership
functions of the operands. Theor operator results in
a maximum operation for the membership functions of
the operands. In the example of Figure 7 theand op-
erator is applied to the fuzzy setsdensity is highand
curvature is not close-to-zero. The result of this opera-
tion is 0.25 as this is the minimum of the chosen values
in the example.

Implication, Aggregation and Defuzzyfication: The
fuzzy implication results in a fuzzy set for a visual style.
The resulting membership function is the minimum of
the membership function describing the semantic value
of the style and the value of the antecedent. In Figure 7
the result of the implication of the upper rule is the trun-
cated membership function for the semantic valuegreen
color-coding. The truncated membership function de-
scribes a fuzzy set. The lower rule in Figure 7 results
in the truncation of the membership variable for the se-
mantic valuered color-coding. The implicated fuzzy
setsgreen color-codingandred color-codingare com-
bined using the aggregation function.

During aggregation multiple fuzzy sets influencing one
visual style are combined. In Figure 7 the aggregation
of the two fuzzy sets describing thecolor-codingare ag-
gregated resulting in the sum of the two membership
functions.

The input for the defuzzyfication is the fuzzy set of
the aggregation. The output of the defuzzyfication is
a numeric value for a given visual style. Many com-
mon defuzzyfication methods exist. We chose in our
implementation the centroid method. In Figure 7 the
defuzzyfication results in a numeric value for the style
color-coding. The result of the example in Figure 7 for
the stylecolor-codingis a yellowish green. We chose
the centroid method because its output (unlike for other
popular defuzzyfication methods like the smallest-, the
middle-, or the largest of maximum) varies continuously
if the input varies continuously.

In our implementation we first compute the antecedents
of all specified rules and store them in antecedent vol-
umes. Whenever a style volume has to be evaluated all
previously computed antecedent volumes that affect the

style are used for implication, aggregation and defuzzy-
fication. The implication, aggregation and defuzzyfica-
tion are done in one calculation per voxel position. For
defuzzyfication we want to find the centroid of a func-
tion f (x) resulting from the aggregation. The centroid
cf of a function f (x) is given by the equation:

cf =

∫
x f(x)dx

∫
f (x)dx

(1)

Let the membership function for a semantic valuesi be
mi(x). The membership function for the semantic value
si after the implication of a given ruler j is then given by
the equation

mi
′(x,a j) = min(a j ,mi(x)) (2)

wherea j is the antecedent value of the ruler j . The ag-
gregated membership functionf (x) is then given by

f (x) = ∑mi
′(x,a j) (3)

The centroid of the aggregated function can then be cal-
culated by substituting Equation 3 in Equation 1:

cf =

∫
x∑mi

′(x,a j)dx
∫

∑mi
′(x,a j)dx

(4)

We can rewrite Equation 4 as follows:

cf =
∑

∫
xmi

′(x,a j)dx

∑
∫

mi
′(x,a j)dx

(5)

In Equation 5 it can be seen, that the summands in the
nominator as well as in the denominator do solely de-
pend on thea j . We precompute the summands of the
nominator as well as of the denominator and store them
in a lookup table. During evaluation thea j are used as
index for the lookup tables. The sum and the maximum
are the most common aggregation functions. Using the
maximum as aggregation function does however not al-
low the precomputation of the summands. The defuzzy-
fication is computationally much more expensive using
the maximum for the aggregation. We therefore recom-
mend to use the sum as aggregation function.

In our implementation the antecedents are computed
and cached. If semantic values of styles or the conse-
quent part of a rule changes the cached antecedents are
reused. The time for the evaluation of a rule depends
very much on the complexity of the rule and the dataset
size. The time for the evaluation of the rules shown in
the examples and results take a few seconds with our
current unoptimized implementation.
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4.2 Rendering

The outcome of the fuzzy logic inference is a style vol-
ume for each specified style. During rendering the style
volumes are used to determine the parameter for the
application of each style. To achieve a parameteriza-
tion of different styles with one uniform framework we
adapt the style transfer functions approach, introduced
by Bruckner and Gr̈oller [2]. Style transfer functions
were introduced to apply artistic styles to volume ren-
dering. A style transfer function, like a common one di-
mensional transfer function, defines an opacity for each
density value. Instead of defining a color for each den-
sity value it defines a style. The style is given by an
image of a sphere. Each sphere might be manually
shaded by an artist resembling the desired artistic style.
The image of the sphere implicitly defines a color value
for each normal direction in eye-space. The pre-shaded
sphere can therefore be used as a look-up table during
rendering. The gradient in eye-space is used to index
the look-up table. The color value of a sample during
volume rendering is simply defined by the color value of
the sphere in the direction of the gradient. We adapted
this approach to parameterize different styles that can
be applied incrementally and selectively. In Figure 8 a
screenshot of the style descriptor widget can be seen.
The small gray triangles indicate the positions of the
user specified pre-shaded spheres. Each row is a pa-
rameterization of a style. The spheres displayed by the
widget in one row are examples for different parame-
ters interpolating the user specified spheres. The top
row shows an artistic surface style ranging from matt
gray over shiny black to glossy metallic. The second
row shows a tissue type style often found in medical il-
lustration. The tissue style in Figure 8 shows examples
for soft tissue, skin, and bone. The third row describes
different contour styles ranging from transparent, over
black to red contour. The last two rows in Figure 8
show examples for shading styles and glossy highlight
styles. Style descriptors provide a uniform framework
for the parametrization of styles. The user defines a few
spheres that are used to parameterize the styles. Layered
style descriptors can be combined during rendering.

Our rendering approach is a GPU based ray-casting al-
gorithm. We use one color channel per style. During the
evaluation of each style we do one texture lookup per
sample. The styles are composited from the background
style to the top most layer. Our approach runs with
interactive frame rates on a GeForce 8800GTX graph-
ics card. We measured the average frame rates for the
datasets shown in the result images with a sample dis-
tance of 0.5 and a viewport size of 800×600. The aver-
age frame rate for the dataset (of size 256×256×166)

Figure 8: Screenshot of the style descriptor widget.
Each row shows a parameterized style. From the top to
the bottom row the following styles are shown:artistic
surface style, tissue style, contour style, shading style,
andglossy highlight style.

shown in Figure 10 using the same styles and opacity
transfer function was 9fps. For the engine block dataset
(of size 256×256×256) shown in Figure 9 we achieved
an average of 7fps. However using a less transparent
opacity transfer function for the same settings resulted
in an average frame rate of 20fps. For the monkey at-
las dataset (of size 256×256×62) shown in Figure 11
average frame rates from 9 to 16fps were achieved de-
pending on the used opacity transfer function.

5 Results

We show result images demonstrating the flexibility of
our approach. The results show the capability of the
system to deal with very different volume attributes as
input. Our approach uses the method of abstraction of
the data. The introduction of semantic layers allows for
a great flexibility for the used input data and for the de-
sired visualization method.

In Figure 9 three renderings of the engine block dataset
are shown. The chosen opacity transfer function and
the chosen viewpoint allow the view on many details
of the engine block dataset. On the left image in Fig-
ure 9 cartoonish shading is used to make surfaces of the
engine block with different normals clearly distinguish-
able. In the middle image of Figure 9 the cartoonish
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if principal curvature is not positive then contours are blueish

Figure 9: Incremental and selective application of styles on the engine block dataset. The left image shows a
cartoonish shading effect. The middle image shows a reducedcartoonish shading effect and enhances the edges of
the engine block dataset with contours. The right image selectively colors the contours. Convex regions are shown
in black, whereas concave regions are shown with blueish contours.

shading style is reduced and contours are added. The
contours accentuate the individual parts of the engine
block. In the right image the ruleif curvature is not pos-
itive then contours are blueishis used. The curvature
based selective application of the blue contours makes
it possible to distinguish between convex and concave
contours in the image.

In Figure 10 an illustrative rendering of a CTA scan of
a human head is shown. The left image of Figure 10
uses two different tissue styles for bone and skin. In the
right image of Figure 10 black contours are selectively
applied on the bone using the simple ruleif density is
high then contours are thick. The major vessels of this
dataset are segmented. We used a distance transform of
the segmented data to apply a distance based rule. The
rules if distance to vessels is very low then color is red
andif distance to vessels is low then color is yellowwere
used. We applied the stylecolor on top of the other
styles. Regions of low distance to the vessels can be
seen in yellow and red in Figure 10.

In Figure 11 three images of the monkey atlas dataset are
shown. The monkey atlas dataset contains a registered
CT and PET scan of a monkey head. The CT data was
used for the rendering. The PET data was used for the
application of the ruleif brain activity is high contours
are red. In all images the red contours are shown. In
the top row of Figure 11 two images are shown using
a semi-transparent opacity transfer function. The lower
image in Figure 11 uses a more opaque transfer function
and a more illustrative style.

6 Conclusion and Future Work

In this paper we presented a novel approach for the spec-
ification of the mapping from volume attributes to visual
styles. We enable a linguistic description for the spec-
ification of the desired visualization by using semantic
values for volume attributes and for visual styles. The
novel methodology describeshow different features in
the data are rendered. We believe that this paper opens
up a new research direction dealing with the semantic
specification of visualizations.

The next step will be an adaption of our system to in-
corporate view dependent attributes likedistance to the
mouse cursor, depth(i.e. distance to the image plane),
viewing direction, etc. This will allow the selective ap-
plication of styles driven by view dependent attributes.
An adaption of the algorithm is necessary to make view
dependent rule evaluation possible on the graphics card.
However the used separable aggregation method de-
scribed in Section 4 makes it possible to evaluate the
rules partially on the CPU and partially on the GPU. We
expect the view dependent attributes to be a powerful
tool for interactive illustration.

Further we want to investigate the automatic (or semi-
automatic) derivation of membership functions. We ex-
perienced, that the membership function specification
for different applications usually follows a similar strat-
egy. The membership functions are usually specified
over the range of values that occur within the data. We
plan to use simple heuristics that automatically provide
an initial specification of membership functions. The
automatic generation of membership functions will then
be triggered by the keywordrelatively in a rule. For ex-
ample a rule statingif curvature is relatively low . . .will
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if density is high then contours are thick and tissue style is bone

if distance to vessels is low then color style is yellow

if distance to vessels is very low then color style is red

Figure 10: Illustrative rendering of a human head. Left
image shows the use of two different tissue styles. The
right image shows the selective application of contours
to regions of high density. Further a distance based color
style was overlayed. Yellow encodes low distance to
vessels and red encodes very low distance to vessels.

be translated into a membership function having a peak
at the minimum value of the curvature and will range to
include a pre-specified percentile of the data.

Image manipulation programs like Adobe Photoshop or
Gimp use the concept of layered images. We analo-
gously use the concept of volumetric layers. Currently
the composition of layers is done using the default com-
position method. However, following the analogy of im-
age manipulation programs we could allow an interac-
tive specification of other composition operations like
difference, inversion, multiplication, etc.
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if brain activity is high then contours are red

Figure 11: Illustration of the multi-modal monkey atlas
dataset. The top images show two different views of
the dataset using a transparent opacity transfer function.
The lower image shows an illustrative rendering from
the same view as the top right image. Red contours are
drawn in all three images in region of high brain activity.

References

[1] S. Bruckner and M. E. Gröller. VolumeShop: An
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